Sentiment Analysis at Document Level
Sentiment analysis becomes a very active research area in the text mining field. It aims to extract people’s opinions, sentiments, and subjectivity from the texts. Sentiment analysis can be performed at three levels: at document level, at sentence level and at aspect level. An important part of research effort focuses on document level sentiment classification, including works on opinion classification of reviews. This survey paper tackles a comprehensive overview of the last update of sentiment analysis at document level. The main target of this survey is to give nearly full image of sentiment analysis techniques at this level. In addition, some future research issues are also presented.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Similar content being viewed by others
Sentiment Analysis and Opinion Mining
Chapter © 2017
Sentiment Analysis Techniques for Social Media Data: A Review
Chapter © 2020
Introduction to Sentiment Analysis Covering Basics, Tools, Evaluation Metrics, Challenges, and Applications
Chapter © 2022
References
- Anitha, N., Anitha, B., Pradeepa, S.: Sentiment classification approaches – a review. Int. J. Innovations Eng. Technol. (IJIET) 3(1) (2013) Google Scholar
- Baloglu, A., Aktas, M.S.: An automated framework for mining reviews from blogosphere. Int. J. Adv. Internet Technol. 3(3&4), 234–244 (2010) Google Scholar
- Bhatia, P., Ji, Y., Eisenstein, J.: Better document-level sentiment analysis from RST Discourse Parsing. In: Empirical Methods in Natural Language Processing, pp. 2212–2218. EMNLP, Lisbon (2015) Google Scholar
- Chen, Y.F., Miao, D.Q., Li, W., Zhang, Z.F.: Semantic orientation computing based on concepts. J. CAAI Trans. Intell. Syst. 6(6), 489–494 (2011) Google Scholar
- Duwairi, R.M.: Sentiment analysis for dialectical Arabic. In: 6th ICICS International Conference on Information and Communication Systems, pp. 166–170 (2015) Google Scholar
- Govindarajan, M.: Sentiment analysis of movie reviews using hybrid method of Naive Bayes and Genetic Algorithm. Int. J. Adv. Comput. Res. 3(4), 139–146 (2013) Google Scholar
- Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, New York (2012) BookGoogle Scholar
- Mishne, G., Multiple Ranking Strategies for Opinion Retrieval in Blogs. In: Online Proceedings of TREC (2006) Google Scholar
- Nilesh, M.S., Deshpande, S., Thakre, V.: Survey of techniques for opinion mining. (IJCA) Int. J. Comput. Appl. (0975–8887) 57(13) (2012) Google Scholar
- Nguyen, D.Q., Nguyen, D.Q., Vu, T., Pham, S.B.: Sentiment classification on polarity reviews: an empirical study using rating-based features. In: 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 128–135, Maryland (2014) Google Scholar
- Oard, D.W., Elsayed, T., Wang, J., Wu, Y., Zhang P., Abels, E.G., Lin, J.J., Soergel, D.: TREC 2006 at Maryland: Blog, Enterprise, Legal and QA Tracks. TREC (2006) Google Scholar
- Ohana, B., Tierney, B.: Sentiment classification of reviews using SentiWordNet. In: 9th IT&T Conference, pp. 22–23 (2009) Google Scholar
- Pak, A., Paroubek, P.: Classification en polarité de sentiments avec une représentation textuelle à base de sous-graphes d’arbres de dépendances. TALN (2011) Google Scholar
- Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Empirical Methods in Natural Language Processing, pp. 79–86. EMNLP (2002) Google Scholar
- Pang, B., Lee, L.: A Sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: 42th Annual Meeting of the Associatoin for Computational Linguistics ACL, pp. 271–278 (2004) Google Scholar
- Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2, 1–135 (2008) ArticleGoogle Scholar
- Rafrafi, A., Guigue, V., Gallinari, P.: Réseau de neurones profond et SVM pour la classification des sentiments. In: COnférence en Recherche d’Information et Applications CORIA, pp. 121–133 (2011) Google Scholar
- Rothfels, J., Tibshirani, J.: Unsupervised sentiment classification of English movie reviews using automatic selection of positive and negative sentiment items. CS224N-Final Project (2010) Google Scholar
- Rushdi‐Saleh, M., Martín‐Valdivia, M.T., Ureña‐López, L.A., Perea‐Ortega, J.M.: OCA: opinion corpus for Arabic. J. ASIS&T 62, 2045–2054 (2011) Google Scholar
- Sharma, R., Nigam, S., Jain, R.: Opinion mining of movie reviews at document level. IJIT, 3 (2014) Google Scholar
- Sindhu, C., ChandraKala, S.: A survey on opinion mining and sentiment polarity classification. IJETAE, 3 (2013) Google Scholar
- Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.N., Potts, C.: Recursive deep models for semantic compositionality over a sentiment tree bank. In: Empirical Methods for Natural Language Processing. EMNLP (2013) Google Scholar
- Tripathi, G., Naganna, S.: Feature selection and classification approach for sentiment analysis. MLAIJ, p. 2201 (2015) Google Scholar
- Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: 40th annual meeting of the Association for Computational Linguistics, pp. 417–424. ACL, Philadelphia (2002) Google Scholar
- Vinodhini, G., Chandrasekaran, R.M.: Sentiment analysis and opinion mining: a survey. IJARCSSE 2277, 282–292 (2012) Google Scholar
- Vinodhini, G., Chandrasekaran, R.M.: Effect of feature reduction in sentiment analysis of online reviews. IJARCET (2013). ISSN 2278–1323 Google Scholar
- Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: 50th Annual Meeting of the Association for Computational Linguistics, pp. 90–94. ACL (2012) Google Scholar
- Zhang, Q., Wang, B., Wu, L., Huang, X.: FDU at TREC 2007: opinion retrieval of blog track. In: Voorhees, E.M., Buckland, L.P. (eds), TREC 2007, vol. Special Publication, 500–274 (2007) Google Scholar
- Zhang, Z., Miao, D., Wei, Z., Wang, L.: Document-level sentiment classification based on behavior-knowledge space method. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA 2012. LNCS (LNAI), vol. 7713, pp. 330–339. Springer, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-35527-1_28ChapterGoogle Scholar
- Zhang, L., Hua, K., Wang, H., Qian, G., Zhang, L.: Sentiment analysis on reviews of mobile users. In: 11th International Conference on Mobile Systems and Pervasive Computing, Procedia Computer Science, vol. 34, pp. 458–465 (2014) Google Scholar
- http://www.cs.cornell.edu/people/pabo/movie-review-data/
- https://www.projet-doxa.fr/index.php
Author information
Authors and Affiliations
- Department of Computer Science, Faculty of Sciences, University of Oran 1 Ahmed Ben Bella, PB 1524, El M’Naouer, 31000, Oran, Algeria Salima Behdenna, Fatiha Barigou & Ghalem Belalem
- Salima Behdenna